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CONVERGENCE RATE OF APPROXIMATE SOLUTIONS TO 
WEAKLY COUPLED NONLINEAR SYSTEMS 

HAIM NESSYAHU1 

ABSTRACT. We study the convergence rate of approximate solutions to nonlin- 
ear hyperbolic systems which are weakly coupled through linear source terms. 
Such weakly coupled 2 x 2 systems appear, for example, in the context of 
resonant waves in gas dynamics equations. 

This work is an extension of our previous scalar analysis. This analy- 
sis asserts that a One Sided Lipschitz Condition (OSLC, or Lip+-stability) 
together with W-1'1-consistency imply convergence to the unique entropy so- 
lution. Moreover, it provides sharp convergence rate estimates, both global 
(quantified in terms of the Ws'P-norms) and local. 

We focus our attention on the Lip+-stability of the viscosity regularization 
associated with such weakly coupled systems. We derive sufficient conditions, 
interesting for their own sake, under which the viscosity (and hence the en- 
tropy) solutions are Lip+-stable in an appropriate sense. Equipped with this, 
we may apply the abovementioned convergence rate analysis to approximate 
solutions that share this type of Lip+-stability. 

1. STATEMENT OF MAIN RESULTS 

We study approximate solutions of weakly coupled nonlinear systems of the form 

(1.1) 

a bi (XI t) + a fi(Uti(X,t)) = Sijuxj(x1t) , O< t <T I i = 1 1... nl 

subject to compactly supported (or periodic) initial conditions 

(1.2) Ui(X,t=O)=U9?(X) ,U9?EL?cnBV ,i=1,...,n. 

This system takes, formally, the equivalent diagonal form 

(1.3) a-u?i +ai (ui)-u aU = ESiju , <t<T, 
at ox 

where ai f (the index i takes henceforth the values 1, ... , ni). The system is 
nonlinear in the sense that each one of its fluxes is convex, i.e., a, > ai > 0. 
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The system (1.1) is weakly coupled in the sense that its coupling is solely due to 
the low-order terms on the right-hand side. Here, S = {Sij } is a constant matrix 
whose off-diagonal entries are assumed to be nonnegative, 

(1.4) Sjj > 0 Vi#&j 

This nonnegativity assumption yields the Lip+-stability, which is at the heart of 
our analysis and will be discussed later. The necessity of this assumption in this 
context is demonstrated in ? 2 by a counterexample from [1]. A related maximum 
principle for such systems satisfying (1.4) may be found in [8]. 

The statements of existence and uniqueness of entropy solutions in this case 
may be easily adapted from the scalar "L1-type" theory via the viscosity limit and 
Krushkov entropy condition (Lax, Krushkov [10]). Alternatively, an existence the- 
ory for (1.1) may also be derived by the method of fractional steps, in a manner 
similar to the treatment in [3]. As for uniqueness, our convergence rate results, 
Theorems 1.4 and 1.6 below, yield uniqueness within the class of Lip+-stable solu- 
tions. 

Owing to the convexity of the fluxes, fi = fi(ui), the entropy solutions of (1.1) 
satisfy a Lip+-stability condition, similar to the familiar Oleinik's E-condition from 
the scalar framework [7], which asserts an a priori upper bound for the Lip+- 
seminorm of the entropy solution. To this end, we let Lip+ denote the Lip+- 
seminorm 

(1.5) [~~~/'W(x) - w(y) + 
(1.5) IIw(X)IlLip+ = esssupy - ) (> + = max(.,0) 

The entropy solutions of (1.1) are those which may be realizable as small viscosity 
solutions of the parabolic regularization, 

(1.6) U ? -fi(u ) = sjj + Q 2 > ? 

In ?2 we use this viscosity approximation in order to find a sharp form of the 
abovementioned a priori bound on the Lip+-seminorm of ai (ui (., t)), which we call 
Lip+-stability. We state this as 

Theorem 1.1 (Lip+-stability estimate). There exists a constant K (depending 
solely on the constant matrix S and on Ia, II LOOG)' such that W(t) = 

maxi Iai (ui (-, t)) II L.?+ satisfies 

Kt 
(1.7) W (t) < 1 +eKt-1 

< maxjW(0), K} 
W(O) K 

In this paper we study the convergence rate of approximate solutions to the 
weakly coupled system (1.1). Let v6(x,t) denote such an approximate solution, 
which is parameterized with respect to the small parameter ?, e.g., the vanishing 
viscosity amplitude, a vanishing discretization gridsize, ? \ Ax, or the inverse of 
an increasing number of modes, e - N-1. We intend to quantify the convergence 
rate of such approximations in terms of their small scale parameter, E. This con- 
vergence is achieved by establishing W-1'1-consistency and Lip+-stability, which 
are appropriately adapted to the current context of nonlinear problems. 

In light of Theorem 1.1, we begin with: 
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Definition 1.2 (Lip+-stability). Let {vi (x, t)}l>o be a family of approximate so- 
lutions of (1.1) and let W6(t) = maxi IIai(va(Q,t))I Lip+ . This family is called Lip+- 
stable if there exists a constant, CT, (independent of E) such that 

(1.8) W6(t) CT , < t < T. 

The family is called weakly Lip+-stable if the following weaker conditions hold: 

(1.9) ef(o ( 0) ?o (_) and j eft W(T)dTdt < O(IlnE) 

Remark. The above definition stems from Theorem 1.1, where we have to distin- 
guish between two different types of initial data: 

* Lip+-bounded initial data, W(O) < oo . In this case the entropy solution 
remains Lip+-bounded, (1.7), and we require the same to hold for the approximate 
solution, [4]. 

* Lip+-unbounded initial data, W(O) = ox . This case indicates the presence 
of initial rarefactions so that the entropy solution is not Lip+-stable. However, we 
can smooth out such initial discontinuities (without sacrificing accuracy), to yield 
mollified rarefaction with Lip+-size of order W(O) - 1/e. In this case, Theorem 
1.1 tells us that the entropy solution satisfies a corresponding weaker form of Lip+- 
stability, 

elf W(t)dt = 1 + W(0)e eKT (1) 

and 
elf w(T)drdt - 1I+ W((O) [KT ? en( KT)] 

< O(/ln El); 

this motivates the second part of Definition 1.2 (see also [6]). 
For a given family of approximate solutions, {Ve}e>o, we let r& denote the cor- 

responding local truncation error (residual error), 

(1.10) ? -V a 
+ r}fi ) 

We shall provide error estimates for ei = vi -ui in terms of the size of the truncation 
error ri. The norm which we employ is the W-1 1(R1x)-norm, defined as 

IIw(xit)11W-1,1(R) = Ja w(4,t)d<IIL1(R,) 

Note that JIwIIw- l, is a proper norm only for functions with zero mean, fR w(x, t)dx 
=0. 

We assume that our approximate solutions are L?-bounded, 

||Vf1(, t)IIL- < CtIIVV (, O)11L- I 

and conservative 

(1.11) J e6(, 0)d<=O , Jrf (, t)k = 0 . 

Differencing (1.10) and (1.1) and integrating with respect to x leads to a system of 
partial differential equations for fX e'((, t)d . Letting x -- oo, we obtain, owing to 
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conservation, (1.11), a system of homogeneous linear ordinary differential equations 
for fD eE ((, t)d with zero initial conditions. This implies that the error has zero 
mean, 

(1.12) jeiE ( t)d = 0 . 

Note that the components of the system (1.1) need not be conserved in time, because 
of the source terms on the right-hand side, 

j u(e, t)d< = est j u0(()d . 

Instead, the total mass of the approximate solutions is required to match the total 
mass of the exact solution, (1.12); hence, we can measure the error eiQ(, t) in terms 
of the W-1'l-norm. Note that (1.12) need not hold in the more general case of 
nonlinear coupling source terms. 

Next, let us define the sense in which these approximate solutions approximate 
the system, (1.1), and the initial data, (1.2). 

Definition 1.3. A family {vE(x,t)},>o of approximations, (1.10), is W-1"1- 
consistent of order 6 = 6(E) with the initial data, (1.2), if 

lIef(., 0)IW-1,1 - 6 

and with the system, (1.1), if 

IJrfIILOO([o,T],W-1,1(R.)) < CT * 6 

Equipped with the above definitions, we turn to the main results of this paper 
(the proofs of which are given in ?3): 

Theorem 1.4 (Convergence rate for Lip+-bounded initial data). Consider the 
system (1.1) subject to the Lip+-bounded initial data, maxi IIu?IIL.? < oo . Let 
{?v (x, t)} >o be a family of approximations, (1.10), which is 

* W-1 l-consistent with the system, (1.1), and the initial data, (1.2), of order 
O(E); 

* Lip+-stable (1.8). 
Then for every T > 0 there exists a constant CT such that 

llei(-,T) 1w_ < CT ? 

Before we turn to the Lip+-unbounded case we define the notion of L1-stability. 

Definition 1.5. An approximate solution operator, SE(t), is L1-stable if for any 
two initial conditions, uo and vo, 

11S'(t)uo - S'(t)voIIL1(Rx) < Constt * 
IIuo - VOIIL1(RX) , t > 0 

Our second convergence rate result allows possibly Lip+-unbounded initial data. 

Theorem 1.6 (Convergence rate for Lip+-unbounded initial data). Consider the 
system (1.1) subject to the possibly Lip+-unbounded initial data, maxi IIuIILip+ 

<oo. Let {v (x, t)}6>o be a family of approximations, (1.10), which is 
* W-1 1-consistent with the system, (1.1), of order 0(6) and with the initial 

data, (1.2), of order 0(E2 IlnEl) 
* weakly Lip+-stable (1.9). 
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In addition, assume that v (., t) are compactly supported for all 0 < t < T and 
L1-stable. Then for every T > 0 there exists a constant CT such that 

le ( v T)w l < CT ? lInEl 

Remarks. 1. The W-1'l-error estimates of Theorems 1.4 and 1.6 may be translated, 
along the lines of [4], into the following global Ws,P-error estimates: 

(1.13) Jjei(.,T)jws,P <K 0() 2p , -1 K s< -, 1 <p <00 
p 

where 

where? if maxi u + < 00, 

{ ? ln | if maxi I1u%9L.+ 0 ?? 

2. These estimates imply also an 0(5) 3 local error estimate and an 0(5) + 
local error estimate for the postprocessed approximate solution, away from shocks 
(r is the degree of local smoothness of the exact solution; for details consult [6, 
(2.26),(3.9b)]). 

The use of Lip+-stability in order to establish convergence rate estimates was 
first suggested by Tadmor in [11]. It was used in [4, 5, 9, 12] in the context of scalar 
conservation laws with Lip+-bounded initial data. The case of Lip+-unbounded 
initial data, i.e., initial rarefactions, was treated in [6], where the idea of using the 
Lip+-stability of a(u) rather than that of u was introduced. In fact, the current 
paper is an extension of the framework presented in these papers, and especially in 
[6], for the purpose of dealing with weakly coupled systems. 

We note that for scalar conservation laws with no source terms (i.e., n = 1 
and S = 0) we get K = 0 in (1.7) (see the proof of Theorem 1.1 in ?2). Using 
L'Hospital's rule, we find that 

eKt 
lim 1e _ 1 KlO 1 + eKt_1= +t 

K--+O W(O ?K (O0)? 

which recovers the familiar strong Lip+-stability from [11]. In a similar manner, we 
may recover the scalar convergence rate analysis of the abovementioned papers. 

We conclude this presentation by noting that the framework suggested in this 
paper applies, in principle, to the approximate solutions treated in the abovemen- 
tioned references. In particular, most of the work concerning the viscosity regular- 
ization, (1.6), will be done in ?2. 

2. PROPERTIES OF THE VISCOSITY AND ENTROPY SOLUTIONS 

In this section we study various properties of the smooth viscosity solution, 
(1.6), which are uniform in ?, in order to conclude similar properties of the entropy 
solution of the inviscid system (1.1). We discuss most of these properties briefly, 
as most of the results are straightforward adaptations of the familiar scalar theory. 

We start by proving that {ui},>o are uniformly bounded in all LP-norms, 1 < 
p < oo , by the method of LP-iterations. For simplicity, we chose Qi(ui) = ui, so 
that the parabolic regularization (1.6) takes the form 

(2.1) ,i + , Ei uj at Oxf (ui)ZS%j uj?6&2u 
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(for convenience, we omit the superscript ? throughout this section). Integrating 

(2.1) against p u-1 sgn(ui) , 1 < p < ox, and using the straightforward identities 

IwPI, =p 1wP-1Isgn(w)w, , jwPl'l =p wP-lIsgn(w)w,, +p(p-1) VwP2|w 

and the H6lder inequality, 

j pW 
2 

|wv < IIWIlP1 IIVIILP 

we arrive at 
(2.2) 

-i |ui || p < psid lui ll Lp + p E Si X u | uiUj ' |U lPE |Sij I ||Uj II LP- dt L L 
~~~sij ji- 

<PliIL 

Assume that maxi IlUilILP = IlUmliLP . Then (2.2), with i = m, implies that 

(2.3) d lUmIlLP < IIUrMILp I ISmjI 

which leads to LP-boundedness, 1 < p < 00, 

(2.4) 

max IIu(,t)IILP < eKt max llui(,O?)IILP I K = IISIIL- = max{E ISij I} 

Letting p -- oo, we get that (2.4) holds for p = oo as well. 

Remark. General viscosity coefficients, Qi(ui), Q' > 0, may be treated in a similar 
manner, using the inequality 

epj |wTP-l1lsgn(w) 2 Qi(ui) = -p(p-1)jQ ,ui) wp-21 w2dx < 0 

Next, we refer to L1-stability in the sense of Definition 1.5. The idea is similar to 
the proof of L1-contraction, proposed in [2], for scalar conservation laws; the only 
difference in our case is due to the coupling, which gives a (stable) growth in time, 
governed by the same constants as in the previous proof, i.e, 

(2.5) IIviQ,t) - 'ui(,t)IILl < e lVi(.,O) -ui(.,O)IILX 

where ui and vi are any two viscosity solutions of (1.6). This implies uniqueness 
for the viscosity solutions as well as for their limit, the entropy solutions. 

The BV-boundedness of the solutions, 

(2.6) IIud.,t)IIBV < e KlUli(,0)IIBVI 

may be derived from (2.5) using the translation invariance of (1.6). The BV- 
boundedness of the viscosity solution is used in order to prove its W-1'-consistency 
with entropy solution, see ?3. 

We now turn to the essential property of Lip+-stability. 

Proof of Theorem 1.1. Let us consider the parabolic regularization of (1.1) which 
corresponds to the choice Qi = ai, 

(2.7) -ui + a fi (ui) sijuj + ai(ui) OX + i) Sju?e 2aiu) 
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Multiplying (2.7) by the diagonal matrix diag{ai}, we get that 

a a , a2 
(2.8) ai + aiyai a ai E Sijuj ai a2ai 

Differentiating (2.8) with respect to x and rearranging, we find that w2 = a 
satisfies 

(2.9) a9t i+WI?+Aix wi +? aiax2wi 

here, 

(2.10) 

a2 ~~~~~a a Ai =ai -? a Wi ,Cii = Sili + i / i i siji, 

We concentrate now on the maximal values of wi which may be attained at 
different points, say xi(t), 

Wi(t) = max{wi(x,t)+} = wi(xi(t),t) > 0 . 
x 

At these points we have 

a a2 
-wi(xi(t),t) = 0 a2Wi(xi(t)7t) <0. 

Using this in (2.9), we arrive at the coupled system of ordinary differential inequal- 
ities 

(2.11) dt < 
i 

Here we made use of the nonnegativity assumption (1.4), which together with the 
positivity of ai-guarantees that Cii > 0 whenever i / j. This implies that 

Cijwj (xi, t) < CijWw (xj, t) = CijWj (t) Vi j 

and (2.11) is therefore justified. 
We note that the coefficients Cij are bounded, owing to the LI-bound estab- 

lished earlier for ui and the assumption of convexity, a' > ca > 0. 
From (1.4) and (2.11) we conclude that W = maxi Wi satisfies the Riccati-type 

inequality 

(2.12) d-W<-W2+KW , K=max{ZCij}. 
dt- 

Multiplying (2.12) by e-Kt, we get that Z = e-KtW is governed by 

-z <eKt Z2 (2.13) dt -e 

Finally, integration of (2.13) yields, for W = eKtZ, the desired estimate (1.7). E 
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Remarks. 1. General viscosity coefficients Qi 78 ai, may be treated at the expense 
of third-order perturbations, along the lines of [6, Lemma 3.1]. The perturbated 
Riccati inequality will take the form 

d 1 Q'\ 
(2.14) dt <-W2+CiWj+ BiW3, B a a 

2. The Lip+-stability proof, similar to the one presented here, could be applied 
to the more general case of nonlinear coupling. Let us look at a weakly coupled 
viscosity system 

(2.15) a7i+ a fi(ui) = Sia(ui2 * n) + ? 2 ai(ui) 
at 8'X X 

and assume that the coupling source functions, Si, satisfy 

(2.16) 0< <C Vi5$j and a-| <C. 
-0uj3 aun.- 

Then the viscosity solution of (2.15) and, consequently, the limit entropy solution 
are Lip+-stable. 

Example. Before we conclude this section, we would like to emphasize the neces- 
sity of the nonnegativity assumption (1.4). This assumption was used, mainly, for 
the derivation of inequality (2.11). Observe that if (1.4) fails, a shock wave of, say, 
u;, may give positive contribution to wi in (2.9), and a rarefaction wave might 
evolve, violating the Lip+-stability. 

This situation occurs in the 2 x 2 systems presented in [1] and [3]. We will 
briefly discuss the system presented in [1, ?3], where there are two coupled Burgers' 
equations of the form 

(2.17) Ut + UUX + v = 0 
Vt + VVx = 0. 

The linear coupling matrix in this case, S= (?0 J) violates (1.4). 

In [1], Hunter presents numerical solutions of two examples; one with the initial 
data 

(2.18) u(x, 0) = sin(x) 
v (x, 0) = Cos (x) 

[1, (3.6)], and the other with the initial data 

(2.19) ~~~~u(x, 0) = 0 , 
(2.19) v(x, 0) = s(x - r) 

where s(x) is the 27r-periodic sawtooth function, 

s(x) =x, Ixl < X and s(x+2w) = s(x), 

[1, (3.9)]. The numerical results for these two examples are given in [1, Figures 
1 and 2]. In both examples, rarefactions evolve in a finite time and there is no 
Lip+-stability. Moreover, it is clearly observed, in both numerical solutions, that 
the rarefaction in one variable occurs exactly in the same space location as the 
shock in the other variable, as explained by our above analysis. 
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This situation is prevented in our case by condition (1.4), which guarantees 
Lip+-stability, meaning that a rarefaction wave cannot develop and that initial 
rarefactions immediately open. 

3. PROOF OF THE MAIN RESULTS 

Here we prove our convergence rate estimates stated in Theorems 1.4 and 1.6. To 
this end, we introduce the following notation, which links together the Lip+-stability 
of both the approximate solution, vi (x, t), and the entropy solution, ui (x, t): 

L(t) = maxLi(t) , Lj(t) = max{jja(vi(., t))L j v Ha(ui(7,t))j j|Lp} 

Proof of Theorem 1.4. Assume that both the exact and the approximate initial 
data are Lip+-bounded, 

(3.1) L(0) < oo . 

Subtracting (1.1) from (1.10), we arrive at the equation which governs the error, 
eiD (x, t), 

(3.2) ?e + -o [djef= Sjjej +r 

where 

(3.3) ai = ai (vi6 Ui) =Jai ((;vi + (1 - )uj) dX 

Integration of (3.2) with respect to x gives 

(3.4) 
a 

Ef + ai 
a 

E= SijEj6 + R, 

where Ef and Ri denote the primitives of ei and ri, respectively, 
rx rx 

(3.5) Ef (x,t)= J ei((,t)d< , Ri(x,t)= j ri6((,t)c. 
-00 -00 

Note that, owing to conservation, (1.12), we get that 
ro0 

lim E (x,t)= [00 ei(,t)d= 0. 
X-+O J00 

Integration of (3.4) against sgn(Ei6) yields 

(3.6) d EE6II < - a - j Ei-I dx ?ZSijIEJfLl + IIR'IIL. dt Ll ji ax j1 E 

To proceed, we use the following result, taken from [6] (consult (2.11) and (2.13) 
there), 

(3.7) j'iai (-+ IEfI) dx < Li(t) - IIEfIIL1 . 

Combining (3.6) and (3.7), we get 

(3.8) dt II Ef 11 1< Li (t) IIIIL1+ESij II Ej- I IL1+ IIR11L1 
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Introducing the notations 

E`(t) = max{IIE (, t)IILl} and R = max max{IIR-(., t)ILl } 
O<t<Ti 

inequality (3.8) implies that 

d E` (t) < [L(t) + K]E6(t) + R6, K = max{ Sj} . 
dIt 31 

The solution of the above differential inequality gives 

(3.9) E6(T) < e K 0 L(t)dt [EE(0) + RE eKs-f LQr)drsIl 

This inequality emphasizes the main ingredients of our error estimate: 

* The Lip+-stability measured by the temporal integrals of L(t); 
* The W-1'l-consistency with the system and the initial data- measured, re- 

spectively by RI and E6(0). 

The Lip+-stability of the entropy solution, (1.7), together with that of the ap- 
proximate solution, (1.8), and assumption (3.1), imply that 

(3.10) L(t) < CT I O<t<T . 

The uniform Lip+-bound, (3.10), and inequality (3.9) imply that 

(K+CT)T 
e(K?CT)T -_ IRE 

E (T) < e(KCT)TEE (0) + K CT) 
1 

Since we assumed W-1"1-consistency of order 0(E) with the initial condition and 
with the system, both E(0) and R6 are of order 0(6) and, therefore, 

E`(T) < O(E) 

Hence, we conclude, componentwise, that 

||e6(T)|jw_j 1 = JjEj (T)II1<e() 

and the proof is thus completed. O 

Proof of Theorem 1.6. Because of the possible existence of initial rarefactions, con- 
dition (3.1) need not hold now. Therefore, we introduce the function 6(Q) = 
' 

6), 6 > 0, which is the dilated mollifier of 

This choice of mollifier satisfies 

11* W - WIIL1 ' 0(6) IIwIIBV and 114'& * WIlL < ? 0 6 1 0 

With this in mind, we return to the exact system, (1.1), and the approximate 
one, (1.10), and define a new pair of solutions, ua and v?"5, by mollifying the initial 
data; i.e., ub is the solution of (1.1) with the initial data u (., 0) = V) * u%(, 0) and 
vi'6 is the solution of (1.10) with the initial data v" 6(., 0) = fb6 * v (., 0). 
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We are now able to estimate the W-1'1-error by decomposing it as follows: 

(3.11) 

e6(,T) IIW-1,1 < IIv(, T) - v'6(., T) IIW-1,1 + IIvE(,T) - d(., T) IIw-i 
+ IIQ(-,T)-uj(-,T)IIw-i,i 

Since, for compactly supported functions w, it holds that 

(3.12) IIWIIw-,1 <? I suppfw}| * llW|lL1 

and since both the exact and approximate solutions are LI-stable, we bound the first 
and last terms on the right-hand side of (3.11) as follows (Q denotes the common 
compact support)2: 

(3.13) 

jjvE(-, T)- v"'6(, T)IIW-1,1 < IQI * j|vE(-, T) - v"'6(v T)JIL1 

< I CT * (Ivf, 0) - v (, O)IIL1 < IQI * 0(6) * IIVK' O)IIBV 

= 0(6) - IIVG(-,O)IIBV 

Similarly, 

(3.14) IIuj(Q, T) - u(-, T)IIW-1,1 < 0(6) IIui(, O)IIBV 

We are left with the term I I v (*,T) - (, T) I Iw-- 1. Since 

L (O) = 
max{llaj(v'6 

(.,O)) llL-P, ll<a(u0(,O))llLlP+} < 0 ( ) 

condition (3.1) is met by these two initial conditions. Therefore, we conclude, along 
the lines of the proof of Theorem 1.4 and using the Lip+-stability of the entropy 
and approximate solutions, (1.7) and (1.9), that 

E&S(T) < e +f L(t)dt [Ee6(0) + R6 1 eKSf L(T)dr 

L ' 

? 0 (-) E6(O) + 0(ln61)R&. 

Hence, using (3.11), (3.13) and (3.14) in this order, we get 

EE(T) < 0(6) [Z[IIui(.i O)IIBV + IIVE(., O)IIBVI 0 ( I) E6(O) + O(1ln61)R6 

Taking 6 = 0(E) and using the assumed W-1'1-consistency of the approximate 
solution with both the system and the initial data we have, for each of the error 
components, 

IlefIw I'_,= IIE (t)IILl < IIE (t)IL1 < O(E lln -I) 
and the proof is thus concluded. El 

2Note that for viscosity-like approximations, which are not compactly supported, we may use 
the exponential decay of the tail. 
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